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Abstract. We examine the nature of the tunable family of panems obtained from the discrete 
q-DLA model in the deterministic zero-noise limit. The q-DLA model is a vaxiant of the standard 
diffusion-limited aggregation (DLA) model in which the DLA growth probabilities are raised to 
the power q. The observed morphologies, which range from compact Eden clusters for ‘I = 0 
through to sharp needle-like clusters with inmasing 0. can be characterized by a sequence of 
step lengths in a stable staircase structure proceeding back from the tip. Side-branch whiskers, 
which are found on the triangular lattice but not on the square lanice, occur closer to the tip as 
0 is increased. Beyond a value qc, whiskerr are found immediately behind the tip. 
We derive the lmgth of the exposed tip as a funaion of 9 using a stationary contour 

approximation and conformal mapping methods. A theoretical estimate for qc is derived by 
refining this approach to incorporate the possible shielding of surface sites by aggregate sites. 
Our theoretical results are in excellent agreement with the numerical results on both lattices. 

1. Introduction 

The Witten-Sander diffusion-limited aggregation (DLA) model [l] and its variants have 
been widely studied as paradigms for the growth of fractal smc tum [Z] (for reviews, see 
e.g. [3-51). Despite intensive effort however, the DLA model remains a major theoretical 
challenge. In this model, and the related dielectric breakdown (DB) model [6], particles 
are added one at a time to a growing cluster by choosing a single surface site at random 
according to a Laplacian probability distribution. In simpler models, such as the Eden [7] 
and Williams-Bjerknes [8] models, the growth site probability distribution is essentially 
uniform, resulting in compact growth. 

Particularly interesting variants of these models exhibiting a tunable range of patterns, 
from compact to fractal, are the q-DL.4 [9] and q-DB [6] models. In these models the 
surface site growth probabilities are raised to a power q prior to each growth step. When 
q = 0 the v-DLA model reduces to the Eden model whereas the V-DB model reduces to the 
Williams-Bjerhes model. 

A second parameter that can be inaoduced into the models is a noise reduction parameter 
m [10-12], whereby a potential growth site must be selected m times before growth occurs. 
The effect of increasing m is to average out the growth instabilities and in the limit m + CO 
the growth is fully deterministic. Studies of the noisereduced variants have led to significant 
theoretical progress in understanding the role of fluctuations in the growth and form of the 
Laplacian models [13,14]. 
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In a recent series of papers we have examined the deterministic zero-noise limit for a 
variety of non-equilibrium growth models. These include theEden [15], oLAandD~ [16,17] 
modds on the square and cubic lattices, and generalized DLA models on the square [IS] and 
triangular I191 lattices. For zero-noise DLA in the absence of surface tension, growth is in the 
form of a stable needle-star with the tips directed along the lattice axes. The star arms are 
characterized by a needle staircase with constant step lengths independent of  the aggregate 
size. The needle-star aggregates are compact on the square lattice [12,13,16,17,20] but 
regular side branches (whiskers) develop back from the tips on the triangular lattice [19] 
(see figure I where a tip of the needle-star is exhibited for each lattice). 

Random fractal structures are observed in the zero-noise limit on random lattices [21]. 

1111 I bl 

Fiyrc 1. Illustration of lhc stable tip shapes of regular DU (1 = I) on the (a)  square and (b)  
vivlgular lartices. In each case the t ip  propagates to the right. 

The nature of growth in the zero-noise limit provides a clear indication of the relevance 
of fluctuations in fractal pattern formation. The limit also provides an ideal testbed for 
the stationary contour approximation and conformal mapping approach [13,14] which we 
have developed to provide a theoretical understanding of stable needle staircases and tip- 
splitting as a function of increasing surface tension [18,19]. However, whilst our theoretical 
analysis (which should be thought of as a lowest-order approximation) was successful in 
describing detailed features of the staircase structures and of tip-splitting it did not explain 
the whiskeriug that we had observed in numerical simulations of DLA on the triangular 
lattice. 

In this paper we present numerical and theoretical results for the zero-noise limit of the 
q-DLA model on the square and triangular lattices. In numerical simulations, we explore 
the full range of pattern formation from compact Eden growth at I) = 0 to regular DLA 
needle-star growth at q = 1  to^ elongated needle-stars for q > 1. The range q > 1 is of 
additional interest as we observe whiskering in the first step above the tip on the triangular 
lattice for q > qe > 1. Theoretical estimates for the length of  the exposed stable tip as a 
function of q are derived from the stationdry contour approximation and conformal mapping 
methods. A theoretical estimate for the value qc. for whiskering in the first step, is then 
derived by refining this approach to include nearest-neighbour screening effects. 

2. Numerical results 

The surface growth probabilities in the V-DLA model 191 are defined by 

p =  -E4 L no I' 
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where q is the lattice coordination number, 4 is a field variable and the sum is over all 
newest neighbours. The field variable 4 is defined by the discrete Laplace equation 

together with the boundary conditions 

1 distant boundary 

[ 0 aggregate and surface sites. 

In the zero-noise limit particles are added to the growing cluster in layers by converting 
the most probable surface sites to aggregate sites at each level of growth. Those surface 
sites that are not fully converted to aggregate sites are partially converted in proportion to 
their growth probabilities. This partial conversion is then accounted for when considering 
growth at the next level.  the growth algorithm can be readily implemented as follows: at 
a given level 1 we define a~set  of weights w(') by 

w ( I )  = (1 - r ( l - l ) ) / p ( l )  (3) 

where r(l-I) are accumulated residues from the previous level and p(') are the normalized a 
priori growth probabilities. Each level of growth corresponds to the conversion of the set 
of minimum weight surface sites into aggregate sites. The set of surface sites that are not 
converted to aggregate sites accrue a further~residue pwmi", i.e. 

Details of our numerical scheme for obmining zero-noise Laplacian growth have been 
reported elsewhere [16,18,19] (see also [20-24]). 

2.1. Square lattice 

Numerical results for zero-noise q-DLA.  cluster^ morphologies as a function of q are 
summarized in figure 2 (square lattice) and figure 3 (triangular lattice). On the square lattice, 
the cluster has a diamond-shaped envelope for q N 0, as anticipated by the correspondence 
with the Eden model at q = 0. Note the presence of fjords at the centre of the faces of 
the diamonds for q = 0.1. These fjords do not appear for q = 0 or for q < 0. As q is 
increased above zero the fiords widen and the cluster evolves into a petal-shaped star with 
the star tips directed along the lattice axes. The tips of the star are characterized by a stable 
staircase structure. In the V-DLA model the staircase structure persists down to the Eden 
limit q = 0 where all steps have length one. As q is increased further the step lengths in the 
staircase increase and the star tips become more needle-like. For example, the tip length is 
three or four units at 

2.2. Trianguiar lattice 

The cluster morpholos as a function of q exhibits a similar pattern on the triangular lattice 
with two essential differences: 

(i) the limit q = 0 yields a hexagonal-shaped cluster having a staircase structure with 
step lengths of one-half (consistent with zero-noise Eden growth on the' triangular lattice); 

= 1 (regular DLA). 

and 



3434 M T Batchelor and B I Henry 

la1 

I O  

Id1 

Figure 2. Initial levels of growth in the zem- - noise limit of ‘)-nu on the square lanice. The 
panmeters are: (a) q = 0.1. N = 1489; (b) 
n = 0.5, N = 1453; (c) g = 0.8, N = 1401; (d) 
‘) 1.2, N = 1281. The limit 0 = 0 is a perfect 
diamond. 

Figure 3. Initial levels of growth in the 
zero-noise limit of q - D u  on the triangular 
lattice. The paramsters are: (a) IJ = 0.1, 
N = 7233: (b) q F 0.5, N = 2185; (e) 
q = 0.8, N = 2107: ( d )  I )  = 1.2, N = 1909. 
The limit q = 0 is a perfect hexagon. 

Figure 4. Labelling of surface gmwth probabilities’ for the square 
lattice. 

(ii) the needle stars exhibit whiskering back from the tips. 
The whiskenng is of particular interest because it clearly demonstrates branching (a 

precursor to fractal pattern formation) without noise in on-lattice Laplacian growth. This 
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whiskering is also apparent in zero-noise regular DLA (7 = 1) on the triangular lattice [19] t 
In the generalized q-DLA model we have a relevant parameter q to focus theoretical studies 
of the whiskering. For example, at q = 1 the whiskering occurs in the second step above 
the tip whereas for 7 > qc > 1 whiskering occurs in the first step above the tip. The tip 
length at q = 1 (regular DLA) is~1.S or 2.5 units. 

3. Theoretical results 

The development of a petal-star-shaped cluster from the regular Eden cluster as q is increased 
above zero can be readily explained. Inbcducing a finite q value changes the growth from 
Eden to Laplacian. In Eden growth the growth probabilities are uniform on all surface sites 
of the cluster whereas in Laplacian growth the growth probabilities are uniform at all points 
on a circle centred on and containing the cluster. The growth probabilities are highest 'at 
surface sites closest to this circle and lowest at surface sites furthest from this circle. Thus 
introducing a finite rj value increases the probability for growth at the vertices of the initial 
diamond (square lattice) or hexagon (triangular lattice) and decreases the probability for 
growth along the faces, with minimum probability for growth at the centres of these faces. 
This then has the effect of producing fjords at the centres of the faces and branching along 
the direction of the vertices. 

In earlier work we derived details of the branch tips by employing a stationary contour 
approximation~to obtain expressions relating the step lengths in the stable needle staircases 
to the surface growth probabilities [18,19]. 

3.1. Square lattice 

On the square lattice we label the surface growth probabilities back from the tip by 
PO, p1, p z ,  . . . as in figure 4. The condition~for growth at site n + 1 (rather than at the 
tip) is then given by [IS] 

and the length of the tip is l i  = n or n + 1. The surface growth probabilities in (5) can 
be evaluated by combining a stationary contour approximation with conformal mapping 
methods. In this approach [13] the growth probability at a surface site around a tip is 
approximated by the probability for an off-lattice walker to contact an interval [P,, Pj+l]  

on a stationary contour. The latter probabilities are calculated by conforkally mapping the 
stationary contour onto a circle or a straight line-the probabilities are proportional to the 
length of the transformed interval IPj - P;+] I under the conformal mapping. In the 7-model 
these probabilities are then raised to the power q. 

On the square lattice we consider probabilities derived from the conformal mapping 
of a protrusion with: (i) a semi-circnlar tip and (ii) a square tip onto a straight line. The 
transformation [13] 

i In conu3sc at r) = 1 the DB model exhibis tipsplitting into eight major arms on the square lattice [16,18,20] 
and twelve major arms on fie hiangular laitice [19]. Similarly the regular DB model exhibits tipsplitting on the 
cubic lattice, where% regular DLA has six stable arms l16.171. 
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maps the exterior of a protrusion with width 2a and an essentially semi-circular tip to the 
right half-plane, with the contour going to the imaginary axis. Here the lattice spacing 
a = x j 2 .  The transformation [18] 

M T Batchelor and B I Henry 

w = b n  (z + - z m  - ia 
x (7) 

maps the exterior of a protrusion with width 2a and a square tip to the upper half-plane, 
with the contour going to the real axis. 

The surface growth probabilities are now calculated from 

po = 12P,'Iq pj  = lP,!+l - Piln , j = 1.2, ... (8) 

where the P' are obtained by conformally mapping the points 

(9) 

and 

(10) 
(-a cos2 0,  a sin2 e) 
'(0. a) square tip. 

semi-circular tip 

In the above, 0 N 0.96939. Tip lengths in the q-DLA model on the square lattice can 
now be readily calculated from (5) by calculating pj as outlined above. Our theoretical 
results, together with our numerical measurements, are listed in table 1. There is excellent 
agreement over the full range of q for which numerical measurements were made. 

Table 1. Theoretical estimates for the length ti of the exposed tip in ~ - U L A  as a function of 
r )  on the square lattice for the indicated contours. The exact numerid values are shown for 
comparison. 

ti Semi-circular ~ Square Numerical 

1-2 q c 0.72 'I c 0.65 q c 0.59 
2-3 0.60 c q c 0.86 
3-4 0.87 c q c 1.03 
4-5 1.12 cq c 1.21 1.03 c q c 1 . 1 1  1.04 c r) c 1.14 
5-6 1.15 c q c 1.22 
6-7 1.23 c n c 1.29 

0.73 c r) c 0.97 
0.98 c r) c 1 . 1 1  

1.22 c q c 1.28 
1.29 c n c 1.33~ 

0.66 c q c 0.88 
0.89 c q c 1.02 

1.12 c q c 1.18 
1.19 c n c 1.23 

3.2. Triangular lattice 

As mentioned previously our theoretical approach has been less satisfactory in accounting 
for detailed features in DLA growth on the triangular lattice. In a lowest-order treatment 
we can proceed as for the square lattice [IS]. To take into account the staggered nature 
of alternate layers of growth, we label the surface growth probabilities as in figure 5, and 
derive the condition for growth at site n + ahead of further growth at the tip [19], 
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Figure 5. Labelling.of suface growth probabilities for the triangular 
lattice Note that the surface (open circles) at site 2n - 1 is shielded 
by the surface at site 2n. The reduced contour interval due to this . .  w .  shielding is also shown 

This condition defines the length of the exposed tip as I, = n - 1 or n+&. On the triangular 
lattice a good approximation to the surface growth probabilities can be obtained from the 
conformal mapping of a six-armed star with a weU defined exterior but no width. The 
probability for growth along an interval [Pa. 4 1  of the arm is given by 

It is a simple matter to assign intervals to surface sites on the triangular lattice and then to 
evaluate the integral in (12) and thus derive the surface growth probabilities. The results 
are [see also [19]) 

~2 1 3  p1: = -[sin-'[P:) -sin- (P1:+2)] k > 1 
?f 

' ~ po=Z[l--ssln 2 . 4  ( P I ) ]  3 
x 

where 
P k  = 1 - CK/L 

ck = (k - 1)/2 k > 1 
(14) 

and the remaining ci is defined by the local geometry of the tip. In the results reported 
here we have considered a triangular tip (ct = 2 5 )  and a parabolic tip (cI 2 0.2087). To 
calculate tip lengths in the IJ-DLA model on the triangular lattice we make the replacement, 
pi + pr ,  in (11). Results from this analysis are compared with numerical results in 
table 2. Excellent agreement is obtained for the triangular contour in the range < 1.lt. 
However, for 7 greater than this critical value, the numerical simulations provide evidence 
of whiskering with the tip length  alternating between three  distinct^ values. By contrast, 
the above theoretical analysis always predicts a tip length alternating between two different 
values. 

Table 2. Theoretical estimates for the length el of the exposed tip in q-m.4 as a function of 
q on the miangular lattice for the indicated contours. The estimates for the three-step values 
follow from equations (16) and (17) where screening of surface sites is taken into account. The 
exact numerical values are shown for comparison. . . 

el Triangular Parabolic Numerical 

0.5-1.5 q c 0.88 q < 1.07 q < 0.84 
1.5-2.5 ~ 0.85 c 'I c 1.10 
1.5-2.5-3.5 0.93 < 1) < 1.23 1.08 < q < 1.45 1.11 < c 1.56 
2.5-3.5-4.5 1.24 < 'I < 1.43 1.46 < q < 1.65 1.57 <'I < 1.8 

0.89 < q < 1.23 1.08 < q < 1.45 

t Note that the approach of [I41 approximating the outer envelope of the tip as a wedge predicts an envelope head 
angle at 'I = 1 of (i) EG = 164.0" for the square and (ii) EG = 1S5.8° for the triangular lauices. These results me 
in excellent agreement with the observed values in the zero-noise limit: (i) Sc = 162' or 166' and (ii) EG = 150' 
or 160°. It would be most interesting to extend these results away from 1) = I .  
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3.3. Whiskering 

Whiskering on the triangular lattice arises from shielding whereby the outermost surface 
site on one step of a staircase partially shields the innermost surface site on the step of 
the staircase that is one level down (see figure 5). It is a simple matter to compute growth 
probabilities that take this shielding into account using the stationary contour approximation. 
The contour intervals associated with the growth at a shielded site are reduced by a factor 
two (see figure 5) and hence the shielded growth probabilities, p* are given by 

M T Batchelor and B I Henry 

(15) 

One immediate consequence of this is that growth may be favoured at site 2n - 1 over 
further growth at the tip when 2n - 1 is unshielded whereas growth may be favoured at the 
tip if 2n - 1 is shielded. Consider such a situation for a row of particles with a surface at 
site 2n shielding a surface at site 2n - 1-this may correspond to the first step in a needle 
staircase with tip length n - 4 (figure 6(a)). Due to the shielding next growth would then 
occur at the tip increasing the tip length to n + $ (figure 6(b)). The surface at site 2n is 
thus shifted back to site 271 + 2, the shielded surface is shifted back to site 2n + 1 and we 
now have an unshielded surface at site 2n - 1. Hence growth at site 2n - 1 is now preferred 
over growth at the tip and this produces a surface gap at site 2n + I-the particle at site 
2n - 1 is a whisker (figure 6(c)). The tip length is now n - %. 

2 
p; = ;[sin-'(&?)  sin-'(^;+^)]. 

whirkrrgap 

mdgmwfh 

Figure 6. Steps in the formation of a whisker at site 
2n - 1 with a first step length altemaing between (a)  
n - f .  (b) n + f a d  (c) n - $. Open circles denote 
surface sites. 

We have used the above scenario to motivate a derivation of conditions for whiskering 
with a tip length alternating between three values. Explicitly we find that whiskering with 
a tip length of 1.5,2.5,3.5 can occur provided that 

PI + P3 < PO < PI f P3 + PS 
(16) 

(PO - PI - P3)(P3 - P; + P.T) < (PO -'PI - P3* - P3PS. 
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Similarly we find that whiskering with a tip length of 2.5,3.5,4.5 can occur provided 

P1 f P3 f PS PO < PI + P3 i- PS i- Pl 
(17) 

The inequalities, (16) and (17) define a range of q values for whiskers with tip 
lengths 1.5,2.5,3;5 and 2.5,3.5,4.5 respectively. Results from this theoretical analysis 
are compared with results from numerical simulations in table 2. There is good agreement 
between the theoretical and numerical values, pmicularly for the parabolic contour, which 
predicts a value qs N 1.08 (numerical qc N 1.11) for the first appearance of the threestep 
with whiskers directly behind the tip. 

(PO - P1 - P3 - PS)(PS - P; f &) < (PO - PI - p;  - P; - p,”)p7. 

4. Conclusion 

On-lattice simulations of the q-DLA model were compared with theory in the deterministic 
zero-noise limit. The observed morphologies were found to range from compact Eden 
clusters for q = 0 through to needle-star clusters with increasing q. Conformal mapping 
methods together with a stationary contour approximation were employed to estimate the 
tip length as a function of q and excellent agreement was obtained with the numerical 
simulations. On the triangular lattice, but not the square lattice, side-branch whiskers were 
observed which occur closer to the tip as q is increased. We were able to account for 
the whiskering by including an effective shielding in the stationary contour approximation. 
The shielding is due to the staggered nature.of growth on the triangular lattice. On the 
square lattice where growth layers stack directly on top of each other there is no analogous 
shielding. 

Acknowledgments 

MTB has been supported by the Australian Research Council. The calculations reported here 
were carried out on the Fujitsu W-2200 at the Australian National University Supercomputer 
Facility. 

References 

[l]  Witten T A  and Sander L M 1981 Phys. Rev. Lett, 47 1400 
[21 Mandelbrot B B 1982 The Fractal Geometry ofNature (San Francisco: Freeman) 
131 Meah P 1988 in P h a e  Trmsitions ond Critical Phenomena vol 12, ed C Domb and I Lebowitz (New 

[4l Vicsek T 1989 Fractal Growth Phenomena (Singa.pore: World Scientific) 
[SI Matsushita M 1989 The Fractal Approach to Heterogeneous Chemirtry ed D Avnir (Chichester: Wiley) p 161 
[61 Niemeyer L, Pietronem L and Wiesmann H 1 1984 Phys. Rev. Lea 52 1033 
[7] Eden M 1961 Pme. 4th Berkley Symp. on Mathematical Statisrim and Probabiliry vol 4, ed F Neyman 

[8] Williams T and Bjerknes R 1972 Nature 236 19 
[9] N i t “  I and Stanley H E 1987 J. Phys. A: Math. Gen. 20 L1185 

[IO] Tang C 1985 Phys. Rev. A 31 1977 
[Ill Nittmann J and Stanley H E 1986 Nature 321 663 
[I21 Kertkz I and Vicsek T 1986 J. Phys. A: Math Gen. 19 L257 
[13) Eckmann J-P, Meakin P, Procaccia I and Zeitak R 1989 Pkys. Rev. A 39 3185 

York Academic) p 135 

(Berkley, C A  University of California Press) p 223 . .  



3440 M T Batchelor and B I Henry 

Ball R C, Bwker P W and Blumenfeld R 1991 Eumphys. Len. 16 47 
Batchelor M T and Henry B I 1991 Phys. Len. 157A 229 
Batchelor M T and Henry B I 1992 Phys. Rev. A 45 4180 
Batchelor M T and Henry B I 1992 Physicn A 191 113 
Batchelor M T and Henry B I 1992 Physic= A 167 551 
Batchelor M T, Dun C R and Henry B I 1993 Physiea 193A 553 

Moukwzel C 1992 Physico A 190 13 
Garik P. Richter R, Hautman J and Romanlal P 1985 Phys. Rev. A 32 3156 
G x i k  P. Mullen K and Richter R 1987 Phys. Rev. A 35 3046 
H e m "  H I, Ken& J and de Arcangelis L 1989 Europhys. Left. 10 147 

Mouk-1 C 1992 Physico A 188 469 ~ .~ 


